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Heterogeneity

• What causes between study heterogeneity?

– Differences in patients

– Differences in study design/conduct

– Chance

• Can fit Random Effects models but these only account 

for the heterogeneity – they do not explain it!



Example: Vaccine for the prevention of TB

Between study 

Heterogeneity variance: 

0.42 (0.15 to 1.42)



Exploring Heterogeneity

• Subgroup analyses or Meta-regression methods can 

help to explain heterogeneity by examining associations 

between study characteristics and treatment effects

– Subgroup analysis 

• Fits separate analyses to each subgroup; therefore, 

estimating the between-study heterogeneity (𝜏2) 

separately for each subgroup

– Meta-regression

• Fits covariates within the meta-analysis framework; 

therefore assuming between-study heterogeneity (𝜏2) to 

be the same for all subgroups

• Estimates the difference in intervention effect between 

subgroups 



SUBGROUP ANALYSIS

Pairwise and Network Meta-analysis



Subgroup analyses

Two types of subgroup analyses are possible:

• i) Stratification by study characteristics

• Subsets of “whole” studies defined by study (e.g. 

length of follow-up) or patient characteristics (e.g. 

trial eligibility criteria) can be combined separately

• ii) Stratification by patient characteristics

• “Split” data from individual studies in an attempt to 

identify effect modifiers (e.g. young/old, etc)

• Has more power than such analyses of individual 

trial which may be under-powered

• Data may not be available in trial reports to do this



Example: Cholesterol data

id pub nt nc rt rc chol_red treat fup
1 1992 204 202 28 51 7 2 2
3 1963 156 119 37 40 3 1 5
4 1981 88 30 2 3 8 1 1
6 1988 279 276 61 82 13 1 5
7 1970 206 206 41 55 14 2 5
8 1965 123 129 20 24 7 2 3
9 1989 1018 1015 111 113 4 2 2
10 1968 427 143 81 27 6 1 3
…
…
…
30 1991 6582 1663 33 3 24 1 1
31 1978 5331 5296 236 181 9 1 5
32 1990 48 49 0 1 25 1 2
33 1990 94 52 1 0 25 1 3
34 1973 23 29 1 2 10 1 1

1 = drug, 

2 = diet, 

3 = surgery

• Meta-analysis of 34 RCTs to assess the effect of 

cholesterol lowering interventions on overall mortality



Cholesterol data: Subgroup analysis 

stratified by treatment type (32 RCTs)

𝜏 = 0.21 (0.00 to 0.91)

𝜏 = 0.00 (0.00 to >10)

𝜏 = 0.24 (0.09 to 0.50)

*2 studies excluded due to missing covariate data



META-REGRESSION

Pairwise and Network Meta-analysis



Meta-regression

• Continuous or categorical study level covariates can be 

included in Pairwise and Network Meta-analysis models to 

explore/adjust for systematic differences between studies

– e.g. average age, % of patients female

• In Network Meta-analysis incorporation of study-level 

covariates can reduce both heterogeneity and 

inconsistency by allowing systematic variability between-

trials to be explained. 

i) Heterogeneity - variation in treatment effects between trials 

within pairwise contrasts, and 

ii) Inconsistency - variation in treatment effects between 

pairwise contrasts 



Example: BCG vaccine for the prevention of TB

Trial Latitude 

(degrees 

from the 

equator) 

Vaccinated Not vaccinated 

 

  Disease No 

Disease 

Disease No 

Disease 

1 44 4 119 11 128 

2 55 6 300 29 274 

3 42 3 228 11 209 

4 52 62 13,536 248 12,619 

5 13 33 5,036 47 5,761 

6 44 180 1,361 372 1,079 

7 19 8 2,537 10 619 

8 13 505 87,886 499 87,892 

9 -27 29 7,470 45 7,232 

10 42 17 1,699 65 1,600 

11 18 186 50,448 141 27,197 

12 33 5 2,493 3 2,338 

13 33 27 16,886 29 17,825 

 
• It is suspected that the absolute distance from the equator 

affects the efficacy of the vaccine (Berkey 1995)



Pairwise Meta-analysis: 

Vaccine for the prevention of TB

Between study 

Heterogeneity variance: 

0.42 (0.15 to 1.42)



Meta-regression Results
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Meta-regression – Network Meta-analysis

• In Network Meta-analysis, a study-level covariate 

cab be seen as a variable that interacts with the 

intervention, but these interactions may differ for 

each intervention.



VISUALISING COVARIATES IN NETWORK META-

ANALAYSIS: Duration of disease centred around 

mean

Batson et al 2017.



Meta-regression – Network Meta-analysis

• In Network Meta-analysis, a study-level covariate 

can be seen as a variable that interacts with the 

intervention, but these interactions may differ for 

each intervention.

• Large number of different models with different 

assumptions for the interactions in a multiple 

intervention framework.

• Three potential models (not an exhaustive list):

o Independent, intervention-specific interactions

o Exchangeable, related, intervention-specific 
interactions:

o Same interaction effect for all interventions:



X

d12

d13

d13-d12=d23

12

13

Independent, intervention specific 

interactions
• Independent ‘beta’ for each intervention x covariate 

interaction compared to intervention 1 (e.g. placebo) 



X

d12

d13

d13-d12=d23

12

13

Same interaction effect for all interventions

• Common ‘beta’ for each intervention x covariate 

interaction compared to intervention 1 (e.g. placebo) 



Adjusted 

Standard Dose 

Warfarin

Standard 

Dose 

Aspirin

Placebo /       

No treatment
4 7

7

Example: Treatments to prevent stroke in 

non-rheumatic atrial fibrillation patients

Adjusted Low 

Dose Warfarin
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2

Does date of publication (proxy for factors relating to 

change in clinical practice over time) affect treatment 

effects? 
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Adjusting for Baseline Risk

• Special kind of covariate, Baseline risk is often defined as a 

proxy for underlying patient-level covariates thought to 

modify the intervention effect, but which cannot be 

accounted for directly in the model (i.e. unmeasured or 

unknown – e.g. medical history, co-morbidities, etc. ). 

– That is, reflects the risk of an event for a patient under the 

reference intervention

• Need to take into account the correlation between the 

intervention effect and baseline risk.

– Methods for including baseline risk as a covariate have been 

extended to Network Meta-analysis (Dias et al. 2011, Achana 

et al. 2013)



Summary
• Focused on using Meta-regression with aggregate data; 

however, often too few studies resulting in insufficient data 

to detect intervention x covariate interactions (Lambert et al., 

2002)

• If Individual Patient Data (IPD) available, alternative 

strategy to relate intervention effect to individual patient 

characteristics to investigate heterogeneity

– More powerful than average effect vs. average covariate value 

meta-regression

– Few examples of IPD meta-regression with network meta-analysis 
(Veroniki et al. 2016)

• Other analyses

– Component network meta-analysis for complex interventions 
(Welton et al. 2009, Freeman et al. 2018)

– Multiple outcomes (Riley et al. 2017)

24
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